Следующая систематическая процедура способна итеративно выделять наиболее значимые признаки, являющиеся линейными комбинациями входных переменных:
Для определения значимости каждой входной компоненты будем использовать каждый раз индивидуальную значимость этого входа:
Подсчитав индивидуальную значимость входов, находим направление в исходном входном пространстве, отвечающее наибольшей (нелинейной) чувствительности выходов к изменению входов. Это градиентное направление определит первый вектор весов, дающий первую компоненту пространства признаков:
Следующую компоненту будем искать аналогично первой, но уже в пространстве перпендикулярном выбранному направлению, для чего спроектируем все входные вектора в это пространство:
В этом пространстве можно опять подсчитать "градиент" предсказуемости, определив индивидуальную значимость спроектированных входов, и так далее. На каждом следующем этапе подсчитывается индивидуальная значимость